
Topic 3
Basic of OOP

ICT167 Principles of

Computer Science

© Published by Murdoch University, Perth, Western Australia, 2020.

This publication is copyright. Except as permitted by the Copyright Act no part of it

may in any form or by any electronic, mechanical, photocopying, recording or any

other means be reproduced, stored in a retrieval system or be broadcast or

transmitted without the prior written permission of the publisher

3

§ Define and appreciate the use of

information hiding

§ Use pre-conditions and post-conditions

correctly

§ Understand the use of assertions in

programs

§ Only use private instance variables

§ Use accessor methods and mutator

methods correctly

Objectives

4

§ Define Abstract Data Types (ADT), user

interfaces, and ADT implementation

§ Define data abstraction and encapsulation

§ Use javadoc for program document

purposes

§ Know how to change a class implementation

§ Use new correctly

§ Understand assignment with class type

variables

§ Explain references and memory addresses

Objectives

5

§ Use == with class types

§ Define a class equality test

§ Use parameters of class type

§ Understand the null reference

Reading

Savitch: Chapters 5.2, 5.3

Objectives

6

§ Information hiding:

§ Involves designing a method so that in order to

use it, a client does not need to look at the code in

the method body

§A comment at the beginning of the method should tell

the client what the method does

§ Allows client to understand the what (i.e. what the

method does) without worrying about the how (i.e.

how the method does what it does)

§ Is related to abstraction

Information Hiding

7

§ Allows a team of implementers to easily divide

up their work

§ Requires a good clear description of what the

method is supposed to do

§ Allows implementers to make better, more

efficient implementations even after clients

have started using the class:

§The client does not need to change her/his

program just because the body of the method is

changed

§ The same idea of information hiding applies

to whole classes as well as methods

Information Hiding

8

§ The client (user of a method of a class) will

want to know:

§ the name

§ return type

§ Number, type and order of parameters of the

method

§ They will also want a clear, precise and

complete description of what it is supposed to

do

§ Eg: see the on-line documentation for the library

class methods (eg: those of String class)

Pre- + Post-Condition

Comments

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html

9

§ It is very common to present these

comments in the form of a contract

between the creator of a class and the user

(client) of the class:

§ The client supplies some arguments satisfying

certain conditions, the pre-conditions

§ The pre-condition for a method states the

conditions that must be true before the method

is invoked

§ The creator promises to bring about some

changes to the calling object and/or some

properties of the return value, the post-

conditions

Pre- + Post-Condition

Comments

10

§ The post-condition describes the effect of the

method call. That is, it tells what will be true after

the method is executed

§ Eg: this is all the client needs to know ...

/**

Pre-condition: years is a non-negative number

Post-condition: Returns the projected

population of the calling (receiving) object

after the specified number of years.

*/

public int predictPopulation(int years)

Pre- + Post-Condition

Comments

11

§ According to the contract, if the pre-

condition is satisfied, the creator of the class

guarantees that the post-condition will be

satisfied

Pre- + Post-Condition

Comments

12

§ An assertion is a statement about the state

of the program:

§ It can be true or false

§ It should be true when there are no mistakes in

running the program

§ Pre-condition and post-condition comments

are examples of assertions

Assertions

13

§ Assertions can occur anywhere in programs,

such as after a block ({…})

§ A check can be inserted to determine if an

assertion is true and, if not, to stop the program

and output an error message

§ An assertion check has the following form:

assert Boolean_Expression;

§ If the Boolean_Expression evaluates to

false, the program ends and outputs an

error message saying that an assertion

failed

Assertions

14

§ Eg:
assert n == 1;

while (n < limit) {

n = 2 * n;

}

assert n >= limit;

§ // n is the smallest power of 2 >= limit

§ Assertion checking can be turned on or off
§ They can be turned on during the program testing

stage so that a failed assertion will stop the

program and display an error message

Assertions

15

§ A class containing assertions would need to

be compiled differently. Eg:

javac –source 1.8 MyProg.java

§ To run a program with assertion checking

turned on, use:

java –enableassertions MyProg

§ The normal way of running the program has

assertion checking turned off – to make it

run more efficiently

§ Check how to do this in NetBeans?

Assertions

16

§ Recall that if instance variables are declared

public in a class, such as:

public String name;

§ in the class SpeciesFirstTry, then the client

can directly access the instance variable. Eg:

speciesOfTheMonth.name = ”Klingon ox”;

§ The modifier public means that any other

class/program can directly access/change

the instance variable

Making Instance Variables

Private

17

§ Allowing direct access to instance variables

is bad for information hiding

§ The instance variables are the real substance

of a class and once clients are using them, they

can not be changed by the implementer

§ Therefore, HIDE THEM

§ This is achieved by declaring instance

variables using the private modifier

§ An example soon, but first …

Making Instance Variables

Private

18

§ An analogy:

§ An ATM permits deposits and withdrawals, both

of which affect the account balance however, it

does not permit an account balance to be

accessed and changed directly

§ If an account balance could be accessed and

changed directly, a bank would be at the mercy

of ignorant and unscrupulous users

Making Instance Variables

Private

19

§ For example, in SpeciesThirdTry class:

private String name;

private int population;

private double growthRate;

§ Then, they can still be used inside the class
SpeciesThirdTry but not by its clients, like
SpeciesThirdTryDemo

Making Instance Variables

Private

20

§ If an instance variable (or method) is

declared to be private inside a class then it

can not be directly referred to by name

outside its class definition

§ Normally:

§ All instance variables are marked private

§ All methods are marked public (except for

helper methods - see later)

Making Instance Variables

Private

21

§ An accessor method is a method that

accesses an object and returns some

information about it, without changing the

state of that object (its instance variables)

§ Eg: the following methods of the class
SpeciesFourthTry are accessor methods:
§ writeOutput(), predictPopulation(int years),

getName(), getPopulation(), getGrowthRate()

§ Accessor methods are also called get

methods or getters

Accessor and Mutator

Methods

22

§ A mutator method is a method that modifies

the state of an object

§ Eg: the SpeciesFourthTry class methods
void readInput() and

void setSpecies(String newName,

int newPopulation, double

newGrowthRate)

§ are mutator methods

Accessor and Mutator

Methods

23

§ As a rule of thumb, it is best to separate

accessors and mutators:

§ If a method returns a value to the client

program then it should not modify the object

§ Conversely, mutators should have a return type

of void

Accessor and Mutator

Methods

24

§ Since instance variables (i.e. the state of an

object) do need to be looked at, initialized

or changed, this can be achieved as

follows:

1. If the value of an instance variable may be

needed by a client then supply a public "get"

method (accessor method) for the variable

2. If the value of an instance variable might need

to be initialized or changed by a client then

supply a public "set" method (mutator method)

for the variable, or if convenient, for a whole lot

of instance variables at once

Accessor and Mutator

Methods

25

§ Advantages of this design:

§ Inside a set method you can check whether the

new value is legitimate

§ Some variables may not be allowed to be set

by clients

§ Some groups of variables may have to be

updated together

§ The implementer can even change the real

instance variables and keep the old set and get

methods to make the class work the same for

clients

Accessor and Mutator

Methods

26

§ Some classes have been designed to have

only accessor methods and no mutator

methods at all

§ These are called immutable classes

§ Eg: the String class:

§ once a string object has been constructed, its

contents (state) never change

§ no method in the String class can modify the

contents of a string

§ The StringBuffer class is available for

modification

Immutable Classes

27

Example Class
import java.util.Scanner;

public class SpeciesFourthTry {

private String name;

private int population;

private double growthRate;

public void writeOutput() {

System.out.println("Name = " + name);

System.out.println("Population = " +

population);

System.out.println("Growth rate = " +

growthRate + "%");

}

28

Example Class

public void readInput() {

Scanner keyboard = new Scanner(System.in);

System.out.println("What species' name?");

name = keyboard.nextLine();

System.out.println("Population of species?");

population = keyboard.nextInt();

while (population < 0) {

System.out.println("No negative population");

System.out.println("Re-enter population:");

population = keyboard.nextInt();

}

System.out.println("Growth rate (%/yr):");

growthRate = keyboard.nextDouble();

}

29

Example Class

/** Pre-condition: years is a nonnegative number.

Post-condition: Returns projected population of

calling object after specified number of years. */

public int predictPopulation(int years) {

int result = 0;

double populationAmount = population;

int count = years;

while ((count >0)&&(populationAmount >0)) {

populationAmount = (populationAmount +

(growthRate/100) * populationAmount);

count--;

}

if (populationAmount > 0)

result = (int)populationAmount;

return result;

}

30

Example Class
public void setSpecies(String newName,

int newPopulation, double newGrowthRate) {

name = newName;

if (newPopulation >= 0)

population = newPopulation;

else

{

System.out.println("ERROR: negative

population.");

System.exit(0);

}

growthRate = newGrowthRate;

}

31

Example Class

public String getName()

{

return name;

}

public int getPopulation()

{

return population;

}

public double getGrowthRate()

{

return growthRate;

}

} // end class SpeciesFourthTry

32

Example Client
import java.util.*;

/** Demonstrates the use of the mutator method

setSpecies*/

public class SpeciesFourthTryDemo {

public static void main(String[] args) {

SpeciesFourthTry speciesOfTheMonth =

new SpeciesFourthTry();

int numYears, futurePopulation;

System.out.println("No. of years to project:");

Scanner keyboard = new Scanner(System.in);

numYears = keyboard.nextInt();

System.out.println("Enter data on the Species

of the Month:");

speciesOfTheMonth.readInput();

33

Example Client

speciesOfTheMonth.writeOutput();

futurePopulation =

speciesOfTheMonth.predictPopulation(numYears);

System.out.println("In " + numYears + " years

the population will be " +

futurePopulation);

speciesOfTheMonth.setSpecies("Klingon ox",

10,15);

System.out.println("The new Species of the

Month:");

speciesOfTheMonth.writeOutput();

System.out.println("In " + numYears + " years

the population will be " +

speciesOfTheMonth.predictPopulation(numberOfYears));

}//end main

}//end class

34

Abstract Data Types (ADTs)

§ A data type is a set of values together with a

collection of operations that can be

performed on these values

§ An abstract data type (ADT) is a data type

defined so that the clients who use the type

do not have access to the details of how the

values and operations are implemented

35

Abstract Data Types (ADTs)

§ An ADT or a class can be divided into two

parts:

§ Class interface:

§Defines what the client of a class needs to know

in order to use the class

§A client of a class just needs to know its name

and about what public methods it has available

§This is (loosely) called the user interface of the

class

36

Abstract Data Types (ADTs)

§ An ADT or a class can be divided into two

parts:

§ Class implementation:

§Tells how the class interface is realised as Java

code

§All the details like (private) instance variables,

private methods and all method bodies can be

kept hidden (to avoid confusion and allow for

changes etc)

§This is the implementation of the class

37

Abstract Data Types (ADTs)

§ For example, you have been clients of the

String class without knowing its

implementation details

§ Rival teams of developers can supply

several versions of common and useful

classes (eg: String), and, provided the same

methods are available and do the same

things, then we think of all of these as the

same class

38

Abstract Data Types (ADTs)

§ To be more correct, we use the term

Abstract Data Type to refer to a class of

Objects with certain standard public

methods available

§ Eg: we might say that the String ADT is

implemented in many ways, some more

efficient than others

39

Guidelines for Making Class

Definitions into ADTs

§ Place a comment before the class definition

that describes what the class does, and how

the client should think about the class data

and methods

§ Declare the instance variables in the class

as private

§ Provide public accessor and/or mutator

methods to read data and output

data/results (eg: getter and setter methods)

40

Guidelines for Making Class

Definitions into ADTs

§ Also provide basic methods that a client

needs to manipulate data in an object

§ Specify how to use each public method with

a comment placed before the method

heading

§ Make any helper methods private

41Encapsulation + Data

Abstraction

§ Data abstraction = lumping a bunch of

related values together and calling it by one

name

§ Eg: three related values to do with Species are
put together as one SpeciesFourthTry object

§ Encapsulation = lumping related data

values and actions (i.e. methods) together in

one item

§ Eg: making a class to deal with the three Species

data values and all related methods

42Encapsulation + Data

Abstraction

§ If implementers follow these ideas then one

programmer can easily manage whole lists

of species without troubling themselves with

the details within an individual species

§ Another team can deal with details at the

species level

43Encapsulation + Data

Abstraction

§ Another example:

§ One team implements methods to do with

enrolment and personal details of individual

students

§ Another team implements methods to do with

enrolment and results etc., of all students in a

particular unit

§ Another team implements methods to do with

organizing the rooms and exams for all the units
on campus

44

Javadoc

§ The javadoc program (supplied with the

JDK) automatically produces an HTML

document that describes your class in a form

extremely useful for client users of the class

(i.e. with private implementation details

hidden)

45

Javadoc

§ The implementer of the class just needs to

follow two simple rules about the internal

comments which they want to be picked up

by javadoc:

§ Put the comment immediately before a public

class definition or a public method definition (or

other public item)

§ start the comment with /** and end with */

https://www.tutorialspoint.com/java/java_documentation.htm

46

Javadoc

§ Then type:

javadoc MyClassName.java

in the directory in which MyClassName.java

resides; this will create a new file
MyClassName.html

§ Try it with SpeciesFourthTry class or your

own class

http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

47

Javadoc

§ You can also javadoc all classes in a

NetBeans project by selecting

Run|Generate Javadoc from the NetBeans

tool bar

§ There are plenty of features for more

sophisticated use:

§ See Appendix 5 of Savitch for further details

§ You should use javadoc for your

assignment classes

48

Changing the Implementation

§ One of the most important reasons for

information hiding is to allow implementers

to improve their implementation even after

clients have started using it

§ See the case study on pages 350-354 (page

numbers could be different depending of the

edition) of the textbook – A Purchase

class

49

Objects and References

§ The way Java handles class type values, as

opposed to primitive values, affects:

§ The use of new

§ Assignment of class type variables

§ References and memory addresses

§ Testing for equality

§ Class type parameters

50

Objects and References
§ We already know that to create an object of class type

we need to use the keyword new. Eg:

SpeciesFourthTry speciesOfTheMonth = new

SpeciesFourthTry();

§ This sets aside just enough memory (in a special area

of memory called the heap) to store a
SpeciesFourthTry object with all its data values (the

values of its instance variables)

§ It also stores the memory address of this area in the

memory location used by the variable
speciesOfTheMonth

51

Objects and References

§ We say speciesOfTheMonth is a reference

to this new object

§ Thus an object reference is information on

how to find a particular object

§ The object is a chunk of main memory; a

reference to the object is a way to get to that

chunk of memory

§ The variable speciesOfTheMonth does not

actually contain the object, but contains

information about where the object is

52

Assignment with Class Type

Variables

§ Compare the output from the two

experiments in the following program. They

each involve an assignment:

§ one of primitive type

§ one of class type variables

§ The difference in output is explained by the

difference in behaviour of the assignment

operator

53

Assignment with Class Type

Variables
n = m; // n and m are primitive variables

§ This just means that the value currently

stored in m is also put in n

§ There is no lasting association between the two

memory locations

§ However, both of these are class variables

EarthSpecies = klingonSpecies;

§ This results in the memory address currently
being stored in klingonSpecies being also

stored in EarthSpecies

54

Assignment with Class Type

Variables

§ So now the two variables refer to the same

Object

§ If we then make a change to that one Object
via the setSpecies method, it should not be

surprising that the two output calls print out

exactly the same information

55

Example

public class AssignDemo {

public static void main(String[] args){

System.out.println("Experiment 1: primitives:");

int n, m;

n = 42;

m = n;

n = 99;

System.out.println(n + " and " + m);

56

Example

System.out.println("Experiment 2: class

types:");

SpeciesFourthTry klingonSpecies, earthSpecies;

klingonSpecies = new SpeciesFourthTry();

earthSpecies = new SpeciesFourthTry();

klingonSpecies.setSpecies("Klingon ox",10,15);

earthSpecies = klingonSpecies;

earthSpecies.setSpecies("Elephant",100,12);

System.out.println("earthSpecies:");

earthSpecies.writeOutput();

System.out.println("klingonSpecies:");

klingonSpecies.writeOutput();

}//end of main

}//end of class

57

Example

/* OUTPUT

Experiment 1: primitives

99 and 42

Experiment 2: class types

earthSpecies:

Name = Elephant

Population = 100

Growth rate = 12.0%

klingonSpecies:

Name = Elephant

Population = 100

Growth rate = 12.0%

*/

58

New Values in Reference

Variables
§ Consider the following example:

// File: referenceString.java

class referenceString {

public static void main (String[] args) {

String myStr;

myStr = new String("Computer Science");

System.out.println(myStr);

myStr = new String("Games Technology");

System.out.println(myStr);

}// end of main

}// end of class referenceString

59New Values in Reference

Variables
§ The above program will, as expected, write out

Computer Science

Games Technology

§ However, consider some of the details involved:

§ The statement

myStr = new String("Computer Science");

§ creates the first object, and

§ Puts a reference to this object into myStr

60

New Values in Reference

Variables

§ The statement

System.out.println(myStr);

§ Follows the reference in myStr to the first object

§ Gets the data in the first object and prints it

§ The statement

myStr = new String("Games Technology");

§ Creates a second object

§ Puts a reference to the second object into myStr

61

New Values in Reference

Variables

§ At this point there is no reference to the

first object - it is now "garbage "

§ This is a commonly occurring situation in Java, and

not a mistake

§ As the program runs, a part of the Java system

called the "garbage collector" reclaims the lost

objects (the "garbage") so that their memory

can be used again

62

New Values in Reference

Variables

§ The statement

System.out.println(myStr);

§ Follows the reference in myStr to the second

object

§ Gets the data in the second object and prints it

63

New Values in Reference

Variables
§ Thus:

§ Each time the new operator is used, a new

object is created

§ Each time an object is created, a reference to it

is saved in a variable

§ The reference in the variable is later used to find

the object

§ If another reference is saved in that variable, it

replaces the previous reference

§ If no variable holds a reference to an object, the

object becomes "garbage"

64

§ Be careful of using the comparison operator

== to test for equality between class type

variables

§ The test will only return true if the two

variables both refer to exactly the same

Object

§ It is possible to have a different Object with

the same values

Testing for Equality of Class

Variables

65

§ Eg:

SpeciesFourthTry eS= new SpeciesFourthTry();

SpeciesFourthTry kS= new SpeciesFourthTry();

kS.setSpecies(“Klingon ox”, 10, 15);

eS.setSpecies(“Klingon ox”, 10, 15);

if (eS == kS) System.out.println(“EQUAL”);

else System.out.println(“Not EQUAL”);

Testing for Equality of Class

Variables

66

§ Here the output will be “Not EQUAL” and

thus the test of equality will fail

§ Would you want to count these two objects

as being equal? Probably.

§ What about:

“Klingon ox”, 10, 15 and

“klingon ox”, 10, 15

§ What about:
“Klingon ox”, 10, 15 and

“Klingon ox”, 12, 15

Testing for Equality of Class

Variables

67

Defining Your Own “Equals”

§ Many classes usefully need a test of equality

§ Exactly what counts as equal should be

defined by the implementer of the class

§ Often they supply an equals method

68

Defining Your Own “Equals”
§ Eg:

public boolean equals(SpeciesFourthTry otherObject)

{

return

((this.name.equalsIgnoreCase(otherObject.name))

&& (this.population == otherObject.population)

&& (this.growthRate == otherObject.growthRate));

}

§ This allows for differences in (upper/lower) case in the species

name

§ This might be used by a client in a test such as:

if (klingonSpecies.equals(earthSpecies))

System.out.println(“EQUAL”);

else System.out.println(“Not EQUAL”);

69

Class Parameters

§ Passing a class type argument to a method

may change the argument (cf primitive

types)

§ In general it is not good design to allow this

to happen as it may surprise the client but

sometimes it has a use

70

Class Parameters

§ Eg:
public void makeEqual

(SpeciesFourthTry otherObject){

otherObject.name=name;

otherObject.population=population;

otherObject.growthrate=growthRate;

}

§ Call by:
klingonSpecies.makeEqual(earthSpecies);

71

Class Parameters
§ This still allows earthSpecies to refer to a

different Object in memory but it changes all
the data values of earthSpecies to be the

same as those for klingonSpecies

§ Basically the formal parameter otherObject

is given (by the call) a reference to the
earthSpecies Object and so is able to

change it

§ You may hear that Java uses call-by-

reference for parameter passing of class

type variables

72

The null references
§ Note that sometimes a class type variable

will refer to no object, especially if it has just

been declared and not made to refer to a

new object

§ You can use null to initialize any class type

variable to refer to nothing if you don’t need

particular object. Eg:

String line = null;

§ You might get a NullPointerException if

you try to call a method on a variable which

refers to no Object

73

The null references

§ You can test for null-ness via

if (line == null) ...

§ You can test for non-null-ness via

if (line != null) ...

74

The null references
§ Another Example:

String month = "August";

String year = ""; // empty string

// refers to no string at all

String message = null;

int len1 = month.length(); // returns 6

int len2 = year.length(); // returns 0

// runtime error

int len3 = message.length();

§ Note that empty string and a null

reference are different

End of Topic 3

